81°.
The law of reflection states that the angle of incidence is equal to the angle of reflection.
To have a weight of 2.21N., the ball's mass is (2.21/9.8) = .226kg.
<span>a) d = 1/2 (vt), = 1/2 (18 x .17), = 1.53m. </span>
<span>b) Acceleration of the ball = (v/t), = 18/.17, = 105.88m/sec^2. </span>
<span>f = (ma), = .226 x 105.88, = 23.92N. </span>
Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
False, that does not apply to some