Answer:
12.8 g of
must be withdrawn from tank
Explanation:
Let's assume
gas inside tank behaves ideally.
According to ideal gas equation- 
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin scale.
We can also write, 
Here V, T and R are constants.
So,
ratio will also be constant before and after removal of
from tank
Hence, 
Here,
and 
So, 
So, moles of
must be withdrawn = (0.66 - 0.26) mol = 0.40 mol
Molar mass of
= 32 g/mol
So, mass of
must be withdrawn = 
The formula of work is Work (Joules)=Force (Newtons) · distance in the direction of the force (meters), therefore its just a matter of replacing factors.
Work done = 12 · 4.5= 54 joules
Answer:
When atoms join together to form molecules, they are held together by chemical bonds. These bonds form as a result of the sharing or exchange of electrons between the atoms. It is only the electrons in the outermost shell that ever get involved in bonding.
57.0 is it rounded to three sig figs. You count three spaces then round from there, which would be the zero and you would round down because the four is there.
Answer is: electron in 2pz orbital.
The principal quantum number is one
of four quantum numbers which are assigned to each electron in
an atom to describe that electron's state, n=1,2,3... n=2 - <span>the </span>second energy level.<span>
The azimuthal quantum number is a quantum number for
an atomic orbital that determines its orbital angular
momentum and describes the shape of the orbital. l = 0,1...n-1, when l = 1, that is p </span>subshell.
The magnetic quantum number<span>, </span><span>ml, show</span> orbital<span> in which the electron is located, ml = -l...+l, ml = 0 is pz orbital.</span>
The spin quantum number<span>, </span><span>ms</span><span>, is the spin of the electron; ms = +1/2 or -1/2.</span>