Answer:
Step One: Identify two points on the line.
Step Two: Select one to be (x1, y1) and the other to be (x2, y2).
Step Three: Use the slope equation to calculate slope.
Lila did it correctly. The answer is 324
Following PEMDAS, we first focus on the parenthesis. So we simplify 9-3 to get 6
So we go from
18*4^2+(9-3)^2
to
18*4^2+6^2
The next step is applying exponents. In this case, squaring the terms, so we go from
18*4^2+6^2
to
18*16+36
Next is multiplying
18*16+36
turns into
288+36
Finally, add up 288 and 36 to get 288+36 = 324
That confirms that Lila is correct
----------------------
The error that Rob made is that he computed 18*4^2+9^2-3^2 but it is NOT correct. Saying (x-y)^2 = x^2-y^2 isn't a true equation for all x and y. Again you have to simplify what is in the parenthesis first, and then you can square it. Or you must use the FOIL rule to expand out (9-3)^2
Assuming you're concerned with interest rate problems, r is generally involved in something like the formula ...
... i = prt
So, r will have the units of ...
... r = i/(pt) = (dollars)/(dollars·year) = 1/year
That is, r is <em>(some fraction) per year</em>.
_____
Often, the fraction is expressed as a percentage. The fraction will be unitless (as percentages are), leaving the units of r as year⁻¹.
Answer: y=4x-9
explanation: move the -4x over to the other side and it becomes positive 4x and -9 stays the same.
Answer:
29.2
Step-by-step explanation:
Mean = 21.4
Standard deviation = 5.9%
The minimum score required for the scholarship which is the scores of the top 9% is calculated using the Z - Score Formula.
The Z- score formula is given as:
z = x - μ /σ
Z score ( z) is determined by checking the z score percentile of the normal distribution
In the question we are told that it is the students who scores are in the top 9%
The top 9% is determined by finding the z score of the 91st percentile on the normal distribution
z score of the 91st percentile = 1.341
Using the formula
z = x - μ /σ
Where
z = z score of the 91st percentile = 1.341
μ = mean = 21.4
σ = Standard deviation = 5.9
1.341= x - 21.4 / 5.9
Cross multiply
1.341 × 5.9 = x - 21.4
7.7526 = x -21.4
x = 7.7526 + 21.4
x = 29.1526
The 91st percentile is at the score of 29.1526.
We were asked in the question to round up to the nearest tenth.
Approximately, = 29.2
The minimum score required for the scholarship to the nearest tenth is 29.2 .