With acceleration

and initial velocity

the velocity at time <em>t</em> (b) is given by




We can get the position at time <em>t</em> (a) by integrating the velocity:

The particle starts at the origin, so
.



Get the coordinates at <em>t</em> = 8.00 s by evaluating
at this time:


so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).
Get the speed at <em>t</em> = 8.00 s by evaluating
at the same time:


This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

E) Protons, neutrons, and electrons
Explanation:
As we know that relation between energy and wavelength is as follows.
E = 
This means that energy is inversely proportional to wavelength. So, more is the energy of an electromagnetic radiation less will be its wavelength.
Also, f = 
Hence, less will be the wavelength more will frequency of a radiation.
Gamma rays are the rays that have highest energy, small wavelength and highest frequency.
Thus, we can conclude that gamma rays are the electromagnetic radiation which has the highest frequency.
Explanation:
m = 19 oz × (28.3 g/1 oz) = 537.7 g
V = 92.8 mL

Answer:
If the sphere is made of a non-conducting material, charges can´t distribute freely over its surface or volume. In non-conducting material bodies, charges can be transported from a molecule to another nearest to it. Therefore if you rub an object with a positive charge with this sphere made of non-conducting plastic, the object will rip some negative charges (electrons) of that zone of the sphere. Therefore that zone will get a superficial positive charge density, but the non-affected zone of the sphere will keep having a null charge density.