Sound travels fastest in solids. A sound is a vibration that travels in a longitudinal direction through a medium in the form of a mechanical wave.
<h3>What is sound?</h3>
A sound is a vibration that travels in a longitudinal direction through a medium in the form of a mechanical wave.
It can propagate through a solid, a liquid, or a gas as its medium. Solids go the fastest, liquids are slower, and gases are the slowest.
Sound travels the quickest through a solid because the molecules are packed together densely, allowing sound waves to leap from one molecule to the next more quickly.
Because the molecules in solids are packed the tightest, sound travels the quickest through them, whereas sound travels the slowest through gases.
To learn more about the sound refer to the link;
brainly.com/question/927975
Answer:
H = 0.673
Explanation:
given,
side of cubical crate = 0.74
weight of the crate = 600 N
magnitude of force = 330 N
the Horizontal distance of its Center of mass
= 0.74/2
= 0.37
Let the required Height be H
By Balancing the Torques, we get
H x 330 N = 0.37 x 600
330 H = 222
H = 0.673
hence, the height above the floor where force is acting is equal to 0.673 m
Chess does not necessarily make you smarter it makes you better in terms of being patient, strategic, and better at counter-attacking
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.
Answer:
Period of brightness variation and luminosity.
Explanation:
The Cepheid variables are used as distance indicators. This requires estimation of periods and (usually) intensity-mean magnitudes in order to establish a period—apparent luminosity relation. It is particularly important for the techniques employed to be as accurate and efficient as possible.