An object that's moving doesn't necessarily change its speed or acceleration. Also, the force applied to it doesn't need to change ... in fact, a moving object doesn't need ANY force applied to it in order to keep moving.
But any moving object WILL have a change in its position ... THAT's how you know it's moving, and that's WHY you say "It's moving !". (choice-B)
Answer:
8.8 cm
31.422 cm/s
Explanation:
m = Mass of block = 0.6 kg
k = Spring constant = 15 N/m
x = Compression of spring
v = Velocity of block
A = Amplitude
As the energy of the system is conserved we have

Amplitude of the oscillations is 8.8 cm
At x = 0.7 A
Again, as the energy of the system is conserved we have

The block's speed is 31.422 cm/s
Answer:
Ans= 9
See attached picture for clearer solution.
Explanation:
The net electrostatic force acting on charge A = 2/ 2 + 2 /(2) 2 − 2 /(3) 2 = 2 / 2 (1 + 1/4 – 1/9 ) = 41/36 2/2 .
The net electrostatic force acting on charge B = 2/2 + 2/(2)2 − 2/2 = 1/4 2/d2 .
The net electrostatic force acting on charge C = 2/2 + 2/(2)2 + 2/2 = 2/2 (1 + 1 4 + 1) = 9/4 2/2 .
The net electrostatic force acting on charge D = 2/2+ 2 /(2)2 + 2/(3)2 = 2 /2 (1 + 1/4 + 1/9 ) = 49/36 2/ 2 .
The ratio of the largest to the smallest net force = 9/4*2/2 / 1/4 2/2 . = 9
Answer:
the velocity of the water flow is 7.92 m/s
Explanation:
The computation of the velocity of the water flow is as follows
Here we use the Bernouli equation
As we know that

= 7.92 m/s
Hence, the velocity of the water flow is 7.92 m/s
We simply applied the above formula so that the correct value could come
And, the same is to be considered