Answer:
F= 10.4 x10^6 N
Explanation:
A/C to Coulomb's law
F = k q1 q2 / r^ 2
F = 9x 10^9 x 2 x 3 / 72^2
F= 10.4 x 10 ^6 N
Answer:
197.263157895 m/s
169.491525424 m/s
Explanation:
x Denotes position
t Denotes time
Average velocity is given by

The average velocity is 197.263157895 m/s

The average velocity is 169.491525424 m/s
Answer:
8.6 m/s
Explanation:
We can find the final velocity of the dog by using the following SUVAT equation:

where
u is the initial velocity
a is the acceleration
d is the distance covered
For the dog in the problem, we have
u = 1.5 m/s

And the distance covered is
d = 3.0 m
Therefore, we can re-arrange the equation to find the final velocity, v:

Answer:I=12 A
Explanation:
Given
Resistance 
Voltage 
According to ohm's law current through a conductor is directly proportional to the voltage applied.


where V=Voltage
I=Current
R=resistance



The ball will take 2.551 seconds to reach its peak position.
<h3>How much time will the ball take to land?</h3>
We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.
<h3>How quickly does a ball drop?</h3>
The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.
To know more about balls visit:-
brainly.com/question/19930452
#SPJ4