The moment of a couple is Force × perpendicular distance from the arm of the line of action
so the arm of the couple= moment of couple/force=8.5/34=0.25m
the arm is 0.25m
The ideal mechanical advantage (IMA) can be determined by the following equation:
IMA= Input distance/Output distance
The Input distance and Output distance are:
Input distance=220 meters
Output distance=110 meters
When you substitute in the equation of the ideal mechanical advantage (IMA), you obtain:
IMA= Input distance/Output distance
IMA= 220 meters/110 meters
IMA=2
Answer:

Explanation:
Using kinematics equations:

Use
due to condition of distance traveled.
Solving second equation for time, there are two solutions. t=0 and

Use the expression in the first equation to have

Using trigonometric identities, you have the answer of the distance.
By doing the ratio for two different angles, you have the second answer. Due to sine function properties, the distances can be the same to complementary angles. Example, for 20° and 70°, the distance is the same.
Good morning.
We have:

Where
j is the unitary vector in the direction of the
y-axis.
We have that

We add the vector
-a to both sides:

Therefore, the magnitude of
b is
47 units.
The inner planets are closer to the Sun and are smaller and rockier. ... The outer planets are further away, larger and made up mostly of gas. The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars.Apr 23, 2014