9514 1404 393
Answer:
- 2nd force: 99.91 lb
- resultant: 213.97 lb
Step-by-step explanation:
In the parallelogram shown, angle B is the supplement of angle DAB:
∠B = 180° -77°37' = 102°23'
Angle ACB is the difference of angles 77°37' and 27°8', so is 50°29'.
Now, we know the angles and one side of triangle ABC. We can use the law of sines to solve for the other two sides.
BC/sin(A) = AB/sin(C)
AD = BC = AB·sin(A)/sin(C) = (169 lb)sin(27°8')/sin(50°29') ≈ 99.91 lb
AC = AB·sin(B)/sin(C) = (169 lb)sin(102°23')/sin(50°29') ≈ 213.97 lb
(2k² + 5k - 6)(3k - 1)
(6k³ - 2k² + 15k² - 5k - 18k + 6)
6k² + 13k² - 23k + 6
Use the FOIL method to simplify the problem.
(FOIL stands for first outer, inner, last)
Answer:
132 degrees
Step-by-step explanation:
To solve this problem, you need to know a couple of rules
1) Inscribed angle theroem: when an angle is inscribed in a circle and touches the other end (as opposed to ending at the diameter of the circle), the measure of this angle is half of the measure of the arc.
2)Angles of a quadrilateral shape add up to 360 degrees.
3) The angles inside a circle and the angles of the circles arclength adds up to 360 degrees.
So first, solve angle S with inscribed angle theorem. 126/2 = 63
Then, use the rule that all arc angles in a circle add up to 360 degrees to find the arc angle from Q to S. 360-90-126 = 144. Now find angle P with inscribed angle theorem by doing 144/2 = 72.
Now, use the rule that all angles in a quadrilateral add up to 360 to find R. 360-93-72-63 = 132.
Let me know if this doesn't work, I'll look at it again.
Answer:
The answer is 358.01
Step-by-step explanation:
Given:

Now, to solve first we crack the power notation then multiply and then do the addition:

(The value of
is 10 and the value of
is 1.)


.
Therefore, the answer is 358.01 .