Answer:
D.
Explanation:
But this just happen for big stars, like more than 20x the Sun mass.
Shortly: A nebula is a cloud of gas and dust, the material starts to be acummuleted and became a protostar (is like a big planet, almost a star). With enought mass this is a star, burn hydrogen and transform it in Helium.
This occurs in Main Sequence, is about almost all the life time of a star. Then starts the lack of hydrogen. Gravity compress everything, pressure goes up and heat all. Too much energy, Helium get burned and the star grews fast, became a Red Giant. Time pass and the fuel is over, no more making fusion, gravity compress the star, too much strenght, colapses, neutron star.
If it have pretty mass, ok. If have more than like 2x Sun mass, became a blackhole.
Answer:

Explanation:
magnetic flux is the count of magnetic field lines passing through a given loop or area
As we know that magnetic flux is given by the formula

here we also know that magnetic field B and plane of the coil is perpendicular in initial position
So the area vector is always perpendicular to the plane of the coil
so the angle between magnetic field and area vector is parallel to each other and this angle would be zero
so magnetic flux of the coil initially we have

Answer:
<h2>66.67 km/hr</h2>
Explanation:
The average velocity of the car can be found by using the formula

d is the distance
t is the time taken
From the question we have

We have the final answer as
<h3>66.67 km/hr</h3>
Hope this helps you
Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s
Answer:
The constant angular acceleration of the centrifuge = -252.84 rad/s²
Explanation:
We will be using the equations of motion for this calculation.
Although, the parameters of this equation of motion will be composed of the angular form of the normal parameters.
First of, we write the given parameters.
w₀ = initial angular velocity = 2πf₀
f₀ = 3650 rev/min = (3650/60) rev/s = 60.83 rev/s
w₀ = 2πf₀ = 2π × 60.83 = 382.38 rad/s
θ = 46 revs = 46 × 2π = 289.14 rad
w = final angular velocity = 0 rad/s (since the centrifuge come rest at the end)
α = ?
Just like v² = u² + 2ay
w² = w₀² + 2αθ
0 = 382.38² + [2α × (289.14)]
578.29α = -146,214.4644
α = (-146,214.4644/578.29)
α = - 252.84 rad/s²
Hope this Helps!!!