Answer:

Explanation:
you mean deceleration right ? because the acceleration is 250m/s
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
<span>b. The coefficient of static friction for all contacting surfaces is μs=0.35. neglect friction at the rollers.
</span>
The conduction velocity of an axon is determined by myelin sheath
thickness and internode distance.
Axon are structures in the neuron which is involved in the conduction of
impulses away from the cell body. Axons which have myelin sheath conduct
impulses faster than those without it.
Axons which have thicker myelin sheath and longer internode distance will
increase the conduction velocity of an axon and vice versa.
Read more on brainly.com/question/23488967
It's number three on your worksheet. ;)