The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass kg, charge +e = C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed m/s. The proton comes momentarily to rest at a distance m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are m apart?
Explanation:
The given data is as follows.
Mass of proton = kg
Charge of proton =
Speed of proton =
Distance traveled =
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=
where,
U =
Putting the given values into the above formula as follows.
U =
=
=
Therefore, we can conclude that the electric potential energy of the proton and nucleus is .
It could rotate while not advancing distance
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.
Oxygen... Hope this Warner helps
<em><u>because if any metals are there in the flour it would attract it...</u></em>
<em><u>hope it helps you</u></em>
<em><u>and mark as best answer please</u></em>