Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values


Answer:
Eastward, at 11 m/s^2
Explanation:
64N-31N=unbalanced force of 33N
F=ma
33N=(3kg)a
a=11m/s^2 to the East
Answer:
It is important because it carries useful energy through your house that you can use for a variety of tasks.
Explanation:
Hope this helped !
Answer:
The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.
Explanation:
Force is any cause capable of modifying the state of motion or rest of a body or of producing a deformation in it. Any force can be decomposed into two vectors, so that the sum of both vectors matches the vector before decomposing. The decomposition of a force into its components can be done in any direction.
Taking into account the simple trigonometric relations, such as sine, cosine and tangent, the value of their components and the value of the angle of application, then the parallel and perpendicular components will be:
- Fparallel = F*sinα =300 N*sin 67.8° =300 N*0.926⇒ Fparallel =277.8 N
- Fperpendicular = F*cosα = 300 N*cos 67.8° = 300 N*0.378 ⇒ Fperpendicular= 113.4 N
<u><em>The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.</em></u>
Answer:
66.4 N
Explanation:
From Newton's second law, <em>F </em>=<em> ma</em>
where <em>F</em> is the force, <em>m</em> is the mass and <em>a</em> is the acceleration.
Because the object has acceleration in two directions and the mass is constant, the force will be in two directions. The component of the forces are:


The magnitude of the resultant force is given by

