Answer:
If there is no cloud (liquid water) in the parcel
Explanation:
As we know that total work done by a force is given by


so it is product of force and displacement along same direction
as we can write it as

so it must be the product of force and displacement in same directions so correct answer must be
<u>b. is parallel to the displacement of the object</u>
Answer:
-0.8 m/s²
Explanation:
Acceleration is the slope of a velocity vs. time graph.
a = Δv / Δt
a = (0 m/s − 12 m/s) / (15 s − 0 s)
a = -0.8 m/s²
Answer:
Explanation:
Using Boyles law
Boyle's law states that, the volume of a given gas is inversely proportional to it's pressure, provided that temperature is constant
V ∝ 1 / P
V = k / P
VP = k
Then,
V_1 • P_1 = V_2 • P_2
So, if we want an increase in pressure that will decrease volume of mercury by 0.001%
Then, let initial volume be V_1 = V
New volume is V_2 = 0.001% of V
V_2 = 0.00001•V
Let initial pressure be P_1 = P
So,
Using the equation above
V_1•P_1 = V_2•P_2
V × P = 0.00001•V × P_2
Make P_2 subject of formula by dividing be 0.00001•V
P_2 = V × P / 0.00001 × V
Then,
P_2 = 100000 P
So, the new pressure has to be 10^5 times of the old pressure
Now, using bulk modulus
Bulk modulus of mercury=2.8x10¹⁰N/m²
bulk modulus = P/(-∆V/V)
-∆V = 0.001% of V
-∆V = 0.00001•V
-∆V = 10^-5•V
-∆V/V = 10^-5
Them,
Bulk modulus = P / (-∆V/V)
2.8 × 10^10 = P / 10^-5
P = 2.8 × 10^10 × 10^-5
P = 2.8 × 10^5 N/m²
<u>Answer:</u>
The matter does not move in solid state but vibrates.
<u>Explanation:</u>
The atoms inside the matter cannot move or shift their positions without any external force but makes some small vibration movements. Generally in solids, the particles are bound by the attractive forces acting in between the atoms inside the matter.
The small vibrations that are happening inside the matter are because of the external factors like temperature. The increase in temperature raises the kinetic energy of the atoms inside and makes them move faster and this results in the vibration of the matter.