Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
Answer:
a= 17.69 m/s^2
Explanation:
Step one:
given data
A car accelerates uniformly from rest to 23 m/s
u= 0m/s
v= 23m/s
distance= 30m
Step two:
We know that
acceleration= velocity/time
also,
velocity= distance/time
23= 30/t
t= 30/23
t= 1.30 seconds
hence
acceleration= 23/1.30
accelaration= 17.69 m/s^2
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.
The answer is static friction. This is the friction that involves objects that do not move.