Answer:
Its Choice c.
Step-by-step explanation:
a = 60 degrees ( because of the arc = 60 degrees).
b = 1/2 * 60 = 30 degrees.
The answer would be 2.5 because you would do length times width times height so 5.2 times 9.3 is 48.36 but to get to 120.9 you would multiply it by 2.5 so the answer is 2.5 inches.
-hope this helped!
Answer:

Step-by-step explanation:
Given the limit of a function expressed as
, to evaluate the following steps must be carried out.
Step 1: substitute x = 0 into the function

Step 2: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the function
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ sin(x)-tan(x)]}{\frac{d}{dx} (x^3)}\\= \lim_{ x\to \ 0} \dfrac{cos(x)-sec^2(x)}{3x^2}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20sin%28x%29-tan%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%28x%5E3%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7Bcos%28x%29-sec%5E2%28x%29%7D%7B3x%5E2%7D%5C%5C)
Step 3: substitute x = 0 into the resulting function

Step 4: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 2
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ cos(x)-sec^2(x)]}{\frac{d}{dx} (3x^2)}\\= \lim_{ x\to \ 0} \dfrac{-sin(x)-2sec^2(x)tan(x)}{6x}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20cos%28x%29-sec%5E2%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%283x%5E2%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B-sin%28x%29-2sec%5E2%28x%29tan%28x%29%7D%7B6x%7D%5C%5C)

Step 6: Apply L'Hôpital's rule, by differentiating the numerator and denominator of the resulting function in step 4
![= \lim_{ x\to \ 0} \dfrac{\frac{d}{dx}[ -sin(x)-2sec^2(x)tan(x)]}{\frac{d}{dx} (6x)}\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^2(x)sec^2(x)+2sec^2(x)tan(x)tan(x)]}{6}\\\\= \lim_{ x\to \ 0} \dfrac{[ -cos(x)-2(sec^4(x)+2sec^2(x)tan^2(x)]}{6}\\](https://tex.z-dn.net/?f=%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%20-sin%28x%29-2sec%5E2%28x%29tan%28x%29%5D%7D%7B%5Cfrac%7Bd%7D%7Bdx%7D%20%286x%29%7D%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5B%20-cos%28x%29-2%28sec%5E2%28x%29sec%5E2%28x%29%2B2sec%5E2%28x%29tan%28x%29tan%28x%29%5D%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Clim_%7B%20x%5Cto%20%5C%200%7D%20%5Cdfrac%7B%5B%20-cos%28x%29-2%28sec%5E4%28x%29%2B2sec%5E2%28x%29tan%5E2%28x%29%5D%7D%7B6%7D%5C%5C)
Step 7: substitute x = 0 into the resulting function in step 6
![= \dfrac{[ -cos(0)-2(sec^4(0)+2sec^2(0)tan^2(0)]}{6}\\\\= \dfrac{-1-2(0)}{6} \\= \dfrac{-1}{6}](https://tex.z-dn.net/?f=%3D%20%20%5Cdfrac%7B%5B%20-cos%280%29-2%28sec%5E4%280%29%2B2sec%5E2%280%29tan%5E2%280%29%5D%7D%7B6%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1-2%280%29%7D%7B6%7D%20%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B6%7D)
<em>Hence the limit of the function </em>
.
Let the angles be x and (180-x).
Let 2x = 180-x.
Then 3x = 180, and x = 60. One angle is 60 degrees and the other is 180-60, or 120, degrees.
14. You divide the length of ribbon by the size of the pieces wanted so you get
49/3.5 = 14