1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
12

What is 2 times y in an algebraic expression I need help

Mathematics
2 answers:
julia-pushkina [17]3 years ago
7 0
Hi there!

Since 2y is basically 2 * y, the answer is 2y.

Hope this helps!
fgiga [73]3 years ago
3 0
Question:

What is 2 times y in an algebraic expression

Answer:

2y 


You might be interested in
How many groups of 1/4 are in 3
Gnom [1K]

Answer:

12

Step-by-step explanation:

3*4/1 = 12/1 =12

6 0
2 years ago
Read 2 more answers
Lineahasaslopeof
MissTica
the slope of line b is -2. this is because parallel lines share the same slopes, but different y-intercepts.
7 0
3 years ago
What integer represents √ 4
wariber [46]

Answer:

2 is the answer

Step-by-step explanation:

the square root of 4 is 2... right?

3 0
2 years ago
The parabola y=x^2y=x 2 y, equals, x, start superscript, 2, end superscript is reflected across the xxx-axis and then scaled ver
kramer

ANSWER

The equation of the new parabola is

y =  - 5 {x}^{2}

EXPLANATION

The given parabola has equation:

y =  {x}^{2}

If this parabola is reflected in the x-axis, its equation becomes :

y =  -  {x}^{2}

When this parabola is scaled vertically by a factor of 5, the equation becomes,

y =  - 5 {x}^{2}

5 0
3 years ago
Use the limit definition of the derivative to find the slope of the tangent line to the curve
ale4655 [162]

Answer:

\displaystyle f'(4) = 63

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Function Notation
  • Terms/Coefficients

<u>Calculus</u>

Derivatives

The definition of a derivative is the slope of the tangent line.

Limit Definition of a Derivative: \displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}  

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 7x² + 7x + 3

Slope of tangent line at x = 4

<u>Step 2: Differentiate</u>

  1. Substitute in function [Limit Definition of a Derivative]:                              \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  2. [Limit - Fraction] Expand [FOIL]:                                                                    \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  3. [Limit - Fraction] Distribute:                                                                            \displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}
  4. [Limit - Fraction] Combine like terms (x²):                                                     \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7x + 7h + 3 - 7x - 3}{h}
  5. [Limit - Fraction] Combine like terms (x):                                                      \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h + 3 - 3}{h}
  6. [Limit - Fraction] Combine like terms:                                                           \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h}{h}
  7. [Limit - Fraction] Factor:                                                                                 \displaystyle f'(x)= \lim_{h \to 0} \frac{h(14x + 7h + 7)}{h}
  8. [Limit - Fraction] Simplify:                                                                               \displaystyle f'(x)= \lim_{h \to 0} 14x + 7h + 7
  9. [Limit] Evaluate:                                                                                                 \displaystyle f'(x) = 14x + 7

<u>Step 3: Find Slope</u>

  1. Substitute in <em>x</em>:                                                                                                \displaystyle f'(4) = 14(4) + 7
  2. Multiply:                                                                                                           \displaystyle f'(4) = 56 + 7
  3. Add:                                                                                                                  \displaystyle f'(4) = 63

This means that the slope of the tangent line at x = 4 is equal to 63.

Hope this helps!

Topic: Calculus AB/1

Unit: Chapter 2 - Definition of a Derivative

(College Calculus 10e)

3 0
3 years ago
Other questions:
  • The difference of the squares of two positive consecutive even integers is 28. find the integers.
    12·1 answer
  • A baker used 4 cups of flour to make 5 batches of brownie. How many cups of flour does the baker need to make 1 batch of brownie
    13·2 answers
  • hi:) for 5(b) , I got 157.7 &amp; 22.3 but in the answer key, the only correct answer is 157.7. I thought there should be 2 poss
    6·2 answers
  • Find the missing value to the nearest hundredth cos___= 7/18
    10·2 answers
  • Please help me! and explanation on how you got it please
    8·1 answer
  • Om to 4conm.
    5·1 answer
  • How do you solve -5 ( -6 - 3x) + 8 = 83
    13·1 answer
  • 7652 divided by 12.3
    7·1 answer
  • What are the zeros of the quadratic expression 3x2 - 6x - 24?
    9·1 answer
  • Today there is a discount of $10 off a purchase of 5 or more movie tic
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!