Answer: 9.3 x 10^ 18 g CO
Explanation:
Start by knowing that carbon monoxide is the compound CO. To convert molecules to grams, you first need to convert molecules to moles. This can be done using the conversion factor for Avogadro's Number:
(2.0 x 10^5 molecules CO) x 1 mol CO / 6.02 x 10^23 molecules CO
This cancels molecules CO.
Then, you can convert moles to grams, which is your desired quantity. You can find the number of grams for CO by looking at the periodic table and adding together their masses. C = 12 g and O = 16 g. Total of 28 g CO:
(1 mol CO) x 28 g CO / 1 mol CO
This cancels mol CO, which leaves grams CO.
Blood is a liquid substance flowing through the arteries and veins of the body. In a healthy normal person, approximately 45% of their blood volume are cells (mostly red blood cells, white blood cells and platelets).
hope this helps!
Answer:
1. Ionic bonding
2. Covalent bonding
3. Metallic bonding
Explanation:
Ionic bonding also referred to as electrovalent bonding is a kind of chemical bonding that involves the transfer of electrons between the valence shells of two elements with a large electronegativity difference usually a metal and a nonmetal.
For example an ionic bonding scenario might play out between a group one metal and a group seven halogen. While group one metals have one electron hindering their stability, group seven halogens need that one electron that could make them achieve this stability. It is this that causes them to come together in a way where the electron is transferred completely from the valence shell of the group 1 atom and accepted into the valence shell of the group 7 halogen.
Covalent bonding involves the sharing of electrons between atoms of comparable electronegativities. The electro negativity difference is not large enough to permit the total movement of the electrons and hence the electrons are then controlled by the nuclei of the two atoms
Between two metals, what we have is called the metallic bonding
The correct answer is C) There are more particle collision
With more particle collision, more reactions are created.
Answer:
1,081.1 units of heparin should be given to 298 lb person.
Explanation:
We are given:
Weight of the person = 298 lb = 135.143 kg
Conversion factor used:
1 lb = 0.4535 kg
Number of unit of heparin to be given in an hour = 8.0 units/kg
Number of units given to the patient weighing 135.143 kg :

1,081.1 units of heparin should be given to 298 lb person.