Answer:
Standard free-energy change at
is 
Explanation:
Oxidation: 
Reduction: 
--------------------------------------------------------------------------------------
Overall: 
Standard cell potential, 
So, 
We know, standard free energy change at
(
): 
where, n is number of electron exchanged during cell reaction, 1F equal to 96500 C/mol
Here n = 2
So, 
The atoms of the solid have to form a crystalline structure, which means that they have an ordered configuration that is the same throughout the entire solid.
sodium cloride is salt created from sodium Na and chlorine Ci
Na-sodium Ca- calcium
Ci-chlorine FL- flerovium
Ca- calcium Br-bromine
H- hydrogen He-helium