Answer:
ΔE = 150 J
Explanation:
From first law of thermodynamics, we know that;
ΔE = q + w
Where;
ΔE is change in internal energy
q is total amount of heat energy going in or coming out
w is total amount of work expended or received
From the question, the system receives 575 J of heat. Thus, q = +575 J
Also, we are told that the system delivered 425 J of work. Thus, w = -425 J since work was expended.
Thus;
ΔE = 575 + (-425)
ΔE = 575 - 425
ΔE = 150 J
<span>H2C2O4(aq) + 2OH- --> C2O4^2- + 2H2O(l)</span>
Answer:
difficult to answer, need a bit more detail
There are:
3.41 moles of C
4.54 moles of H
3.40 moles of O.
Why?
To solve the problem, the first thing that we need to do is to write the chemical formula of the ascorbic acid.

Now, we know that there are 100 grams of the compound, so, the masses of each element will represent the percent in the compound.
We have that:

To know the percent of each element, we need to to the following:

So, we know that for the 100 grams of the compound, there are:
40.92 grams of C
4.58 grams of H
54.49 grams of O
We know the molecular masses of each element:

Now, to calculate the number of moles of each element, we need to divide the mass of each element by the molecular mass of each element:

Hence, we have that there are 3.41 moles of C, 4.54 moles of H, and 3.40 moles of O.
Have a nice day!
I can't see the pictures clearly but maybe this will help