Answer:
Explanation:
<u>1) Balanced chemical equation:</u>
<u>2) Mole ratio:</u>
- 2 mol S : 3 mol O₂ : 2 mol SO₃
<u>3) Limiting reactant:</u>
n = 6.0 g / 32.0 g/mol = 0.1875 mol O₂
n = 7.0 g / 32.065 g/mol = 0.2183 mol S
Actual ratio: 0.1875 mol O₂ / 0.2183 mol S =0.859
Theoretical ratio: 3 mol O₂ / 2 mol S = 1.5
Since there is a smaller proportion of O₂ (0.859) than the theoretical ratio (1.5), O₂ will be used before all S be consumed, and O₂ is the limiting reactant.
<u>4) Calcuate theoretical yield (using the limiting reactant):</u>
- 0.1875 mol O₂ / x = 3 mol O₂ / 2 mol SO₃
- x = 0.1875 × 2 / 3 mol SO₃ = 0.125 mol SO₃
<u>5) Yield in grams:</u>
- mass = number of moles × molar mass = 0.125 mol × 80.06 g/mol = 10.0 g
<u>6) </u><em><u>Percent yield:</u></em>
- Percent yield, % = (actual yield / theoretical yield) × 100
- % = (7.9 g / 10.0 g) × 100 = 79%
Answer:
Al 72.61%
Mg 27.39%
Explanation:
To obtain the mass percentages, we need to place the individual masses over the total mass and multiply by 100%.
If we observe clearly, we can see that the parameters given are the moles. We need to convert the moles to mass.
To do this ,we need to multiply the moles by the atomic masses. The atomic mass of aluminum is 27 while that of magnesium is 24.
Now, the mass of aluminum is thus = 27 * 0.0898 = 2.4246g
The mass of magnesium is 0.0381 * 24 = 0.9144g
We can now calculate the mass percentage.
The total mass is 0.9144 + 2.4246 = 3.339g
% mass of Al = 2.4246/3.339 * 100 = 72.61%
% mass of Mg = 0.9144/3.39 * 100 = 27.39%
Two months later 13.8 milligrams of the barium-131 still be radioactive.
<h3>How is the decay rate of a radioactive substance expressed ? </h3>
It is expressed as:

where,
A = Amount remaining
A₀ = Initial Amount
t = time
T = Half life
Here
A₀ = 0.50g
t = 2 months = 60 days
T = 11.6 days
Now put the values in above expression we get



= 0.50 × 0.0277
= 0.0138 g
= 13.8 mg [1 mg = 1000 g]
Thus from the above conclusion we can say that Two months later 13.8 milligrams of the barium-131 still be radioactive.
Learn more about the Radioactive here: brainly.com/question/2320811
#SPJ1
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Suppose that 0.50 grams of ban that 0.50 grams of barium-131 are administered orally to a patient. Approximately many milligrams of the barium would still be radioactive two months later? The half-life of barium-131 is 11.6 days.
since, a,b is an acid.. imposibble it is the answer
we left with c and d
while we can see that 'hyroxide' is a base
answer: C