Answer:
so idc![\sqrt[n]{x} \sqrt{x} \alpha \pi x^{2} \\ \left \{ {{y=2} \atop {x=2}} \right. x_{123} \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%5Csqrt%7Bx%7D%20%5Calpha%20%5Cpi%20x%5E%7B2%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x_%7B123%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D)
443
Step-by-step explanation: its 2 6\7
Answer:
32.
Step-by-step explanation:
I accidentally put my age too high. Im only in middle school but 32 could be one answer. If two sides are the same then it could be an isoceles triangle or whatever.
Answer:
1.
Tan 45=√2/n
n=√2
again
sin 45=√2/m
m=2
answer:<u> </u><u>m</u><u>=</u><u>2</u><u>,</u><u>n</u><u>=</u><u>√</u><u>2</u>
<u>2</u><u>.</u>
sin 45=x/3
x=3/√2=3√2/2
y=3√2/2
<u>a</u><u>n</u><u>s</u><u>:</u><u>x</u><u>=</u><u>3√2/2</u><u>,</u><u>y</u><u>=</u><u>3√2/</u><u>3</u>
<u>3</u><u>.</u>
sin 45=a/4
a=4/√2
b=4/√2
ans:<u>a</u><u>=</u><u>4</u><u>/</u><u>√</u><u>2</u><u>,</u><u>b</u><u>=</u><u>4</u><u>/</u><u>√</u><u>2</u>
4.
b=4 base sides of isosceles triangle
sin 45=4/a
a=4√2
ans:<u>a</u><u>=</u><u>4</u><u>√</u><u>2</u><u> </u><u>and</u><u> </u><u>b</u><u>=</u><u>4</u>
Answer:
three over three is simplified to be the value 1
Step-by-step explanation:
your answer is 1