The formula for the change in Gibbs energy of a solid is:
ΔG = Vm ΔP
where, ΔG is change in Gibbs, Vm is molar volume, ΔP is
change in pressure
ΔP = P(final) – P(initial)
P(final) = 1 atm = 101325 Pa
P(initial) = ρ_water *g *h = (1030 kg/m^3) * 9.8 m/s^2 *
2000 m = 20188000 kg m/s^2 = 20188000 Pa
Vm = (950 kg/m^3) * (1000 mol / 891.48 kg) = 1065.64
mol/m^3
So,
ΔG = (1065.64 mol/m^3) * (101325 Pa - 20188000 Pa)
<span>ΔG = -21405164347 J = -21.4 GJ</span>
If we have 6.68% NaClO, it is the same as saying--> 6.68 grams NaClO= 100 mL of solution. we can use this as a conversion.
800. mL (6.68 mL/ 100 mL)= 53.4 mL
solution = solute + solvent
solute= NaClO
solvent= H2O
solvent= 800-53.4= 747 mL of H2O
so, we you need 53.4 mL of NaClO and 747 mL of water or 53.4 grams of NaClO and 747 mL of water
Answer:
a. 3.72 [atm]
Explanation:
For a gas at constant temperature, (with no change in number of molecules of the gas), we can apply Boyle's Law: 
![(1.556[atm])(268.5[mL])=P_2(112.4[mL])](https://tex.z-dn.net/?f=%281.556%5Batm%5D%29%28268.5%5BmL%5D%29%3DP_2%28112.4%5BmL%5D%29)
![\dfrac{(1.556[atm])(268.5[mL\!\!\!\!\!\!\!\!{--}])}{112.4[mL \!\!\!\!\!\!\!\!{--}]}=\dfrac{P_2(112.4[mL]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{-----})}{112.4[mL]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{-----}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%281.556%5Batm%5D%29%28268.5%5BmL%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B--%7D%5D%29%7D%7B112.4%5BmL%20%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B--%7D%5D%7D%3D%5Cdfrac%7BP_2%28112.4%5BmL%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B-----%7D%29%7D%7B112.4%5BmL%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B-----%7D%7D)
![3.716957[atm]=P_2](https://tex.z-dn.net/?f=3.716957%5Batm%5D%3DP_2)
It seems like the answer should have 4 significant figures since all of the other quantities have 4 significant figures, but the closest answer choice of those provided is a. 3.72
Answer:
Explanation:
Bromine >Tellurium > Phosphorus > Helium > Sodium
Electron affinity of Bromine , Tellurium , Phosphorus are positive , of helium is zero and of sodium is negative .