The shorter side of the triangle is 18 cm and each of the longer sides are 54 cm
<u>Solution:</u>
Given that triangle has perimeter of 126 cm
Let the length of the shorter side of the triangle be "a"
The 2 longer sides are 3 times as long as the shortest side
So length of 2 longer sides = 3(length of the shorter side)
length of 2 longer sides = 3a
<em><u>The perimeter of triangle is given as:</u></em>
perimeter of triangle = length of the shorter side + length of 2 longer sides
perimeter of triangle = a + 3a + 3a
126 = a + 3a + 3a
7a = 126
a = 18
So length of shorter side = 18 cm
length of 2 longer sides are each = 3a = 3(18) = 54 cm
Thus, the shorter side of the triangle is 18 cm and each of the longer sides is 54 cm
Answer:
30
Step-by-step explanation:
Substitute the x in the expression with a -5 and substitute the y in the expression with a 6
2(-5)+8(6)
-10+40
30
Step-by-step explanation:
25 is the answer . hope it helps
Answer:
I think it's 4.52. Only if that's one of the options I guess. Good luck!
The part of the triangles which are congruent according to the description are; segment AB and segment DE.
<h3>Which parts of the triangles are congruent?</h3>
It follows from the task content that the two triangles ABC and DEF have been established as congruent. On this note, it can be established that by the congruence theorem that corresponding sides which are congruent and whose ratios equal to a constant ratio are segments AB and segment DE.
Read more on congruence theorem;
brainly.com/question/2102943
#SPJ1