Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
Answer:
Curves around objects
Explanation:
Diffraction is a property of light described by bending of light around an object. This ability of light to bend around edges has facilitated optical effects of light where there is interference of light waves. Other properties of light are: reflection, refraction, polarization, scattering of light, and interference of light.
Coulomb's law is express as:
On the list of choices that you provided, there is no such statement.
True, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
<h3>Relationship between dielectric material and electric field</h3>
The electric field in a capacitor separates the negative and positive charges in the dielectric material, this causes an attractive force between each plate and the dielectric.
The dielectric material can store electric energy due to its polarization in the presence of external electric field, which causes the positive charge to store on one electrode and negative charge on the other.
Thus, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.
Learn more about dielectric material here: brainly.com/question/17090590