Now I can actually edit my answer directly: I'm fairly sure I've got this wrong, and my mind has gone blank for how to do it, if someone could delete this that would be great and I'll think about it and see if I can figure it out!
Ans: Time <span>taken by a pulse to travel from one support to the other
= 0.348s</span>
Explanation:First you need to find out the speed of the wave.
Since
Speed = v =

Where
T = Tension in the cord = 150N
μ = Mass per unit length = mass/Length = 0.65/28 = 0.0232 kg/m
So
v =

= 80.41 m/s
Now the time-taken by the wave = t = Length/speed = 28/80.41=
0.348s
If the transformer’s primary coil has 20 times as many turns of wire in it as the secondary coil has, then the secondary coil provides a small voltage rise for the large amount of current that flows through it.
Answer: Option B
<u>Explanation:</u>
A transformer has a two types of coils, the first one is primary coils and the second one is secondary coil. A secondary coils with hardly any turns in it provides the charges going through it just limited quantities of energy.
Without a long separation over which to do chip away at the charges streaming in the loop, the transformer delivers just a little ascent in the voltage of those charges. Be that as it may, the coil can give this little voltage to ascend to a huge current without requiring an excess of power supply from the input circuit.