Answer:
The resulting velocity of the ball after it hits the racket was of V= 51.6 m/s
Explanation:
m= 55.6 g = 0.0556 kg
t= 2.8 ms = 2.8 * 10⁻³ s
F= 1290 N/ms * t - 330 N/ms² * t²
F= 1024.8 N
F*t= m * V
V= F*t/m
V= 51.6 m/s
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law
Answer:
B = 9.16 10⁻² T
Explanation:
The speed selector is a configuration where the electric and magnetic force has the opposite direction, which for a specific speed cancel
q v B = q E
v = E / B
B = E / v
Let's calculate
B = 4.4 10⁵ / 4.8 10⁶
B = 9.16 10⁻² T
Displacement is usually given to you as it is, but you can also get displacement through velocity by Δd= Δv*t, where <span>Δv is the change in velocity and t is the change in time.
</span>