The velocity of the body is zero; option A
<h3>What is the motion of an oscillating body?</h3>
The motion of an oscillating body is known as simple harmonic motion.
Simple harmonic motion involves a periodical motion of a body whose acceleration is directed towards a fixed point.
For a body that is oscillating up and down at the end of a spring, considering when the body is at the top of its up-and-down motion, the velocity of the body at the top and down is zero since the body comes to rest at the top and down position of its motion.
In conclusion, oscillating bodies undergo simple harmonic motion.
Learn more about simple harmonic motion at: brainly.com/question/24646514
#SPJ1
Answer:
The answer to your question is: letter D.
Explanation:
a.The mass that a mole of substance has, measured in grams per mole. Density is not measure in moles, so this is not the correct answer.
b.The amount of substance dissolved in a liquid, measured in moles per liter. The substance dissolved in a liquid must be measure in grams not in moles, so this answer is incorrect.
c.The mass of substance dissolved in a liquid, measured in grams per milliliter. I think that this definition is correct but is incomple, so this answer is wrong.
d.The ratio of a substance's mass to its volume, measured in grams per milliliter and also equivalent to grams per cubic centimeter. This is the right description to density, so this is the correct answer.
The speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.
<h3>
Speed of the satellite</h3>
v = √(GM/r)
where;
- G is universal gravitation constant
- M is mass of Earth
- r is radius of the satellite
v = √(6.67 x 10⁻¹¹ x 5.98 x 10²⁴/3.57 x 6.37x 10³)
v = 1.32 x 10⁵ m/s
Thus, the speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.
Learn more about speed of satellite here: brainly.com/question/22247460
#SPJ1
Electric force from electomagnetic force and force of gravity from gravitational force