Answer:
88.8 m/s= Speed of wave propagation in the required mode.(3 loops)
Explanation:
When there are 3 loops.
the total length = L = 3 λ /2
⇒ λ = 2 L / 3 = 2 ( 1.11 ) / 3 = 0.74 m
Velocity = v = f λ = (120)(0.74) = 88.8 m/s
Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
Answer:
F = 63N
Explanation:
M= 1.5kg , t= 2s, r = (2t + 10)m and
Θ = (1.5t² - 6t).
magnitude of the resultant force acting on 1.5kg = ?
Force acting on the mass =
∑Fr =MAr
Fr = m(∇r² - rθ²) ..........equation (i)
∑Fθ = MAθ = M(d²θ/dr + 2dθ/dr) ......... equation (ii)
The horizontal path is defined as
r = (2t + 10)
dr/dt = 2, d²r/dt² = 0
Angle Θ is defined by
θ = (1.5t² - 6t)
dθ/dt = 3t, d²θ/dt² = 3
at t = 2
r = (2t + 10) = (2*(2) +10) = 14
but dr/dt = 2m/s and d²r/dt² = 0m/s
θ = (1.5(2)² - 6(2) ) = -6rads
dθ/dt =3(2) - 6 = 0rads
d²θ/dt = 3rad/s²
substituting equation i into equation ii,
Fr = M(d²r/dt² + rdθ/dt) = 1.5 (0-0)
∑F = m[rd²θ/dt² + 2dr/dt * dθ/dt]
∑F = 1.5(14*3+0) = 63N
F = √(Fr² +FΘ²) = √(0² + 63²) = 63N