Answer:
B) with 9/10 submerged
Explanation:
= mass of ice cube
= density of soft drink
= Volume of soft drink displaced
ice cube floats in the soft drink when the force of buoyancy on it balances its weight. Force of buoyancy acting on the cube in upward direction is same as the weight of the soft drink displaced. hence we can write
weight of ice cube = weight of soft drink displaced


we see that the acceleration due to gravity cancel out both side and hence it does affect as astronaut is on earth on in a lunar module.
+1
An electron has a negative charge so losing a charge of -1 from an uncharged, or neutral, atom will leave an ion with a positive charge.
Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0
Answer:
9 volts (assuming 0.60 is in Amperes)
Explanation:
Recall that Ohms law can be expressed as
V = IR, where
V = voltage,
I = current (given as 0.6. I'm going to assume that the units is Amperes because it is not given)
R = resistance (given as 15 ohm)
substituting the above values into the formula
V = IR
V = (0.6)(15)
V = 9 Volts