Answer:
Your answer will be 6.0kg•m/s
Explanation:
In the given question all the required details d given. Using these information's a person can easily find the momentum of the object. In the question it is already given that the mass of the object is 5 kg and the velocity at which it is traveling is 1.2 m/s.We know the equation of finding momentum asMomentum = mass * velocity = 5 * 1.2 = 6So the momentum of the object is 6 Newton.
Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure,
= 2.95 atm
Atmospheric pressure,
= 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;

where;
P₁ = 
P₂ = 
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;

where;
is the density of seawater = 1030 kg/m³

Therefore, the water is flowing at the rate of 28.04 m/s.
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
(-5)/3 - 6/(-5)
You can solve it now :)