By definition, Ampere is a unit of current which is a measure of the amount of charge passing through a point in a circuit per unit of time, with an equivalent charge of 1.602 x 10^(-19) Coulomb per electron. To determine the number of electrons passing through the heater, we use the definition of the current. We calculate as follows:
13.5 A = 13.5 C per second
Charge = 13.5 C/s (10 min) ( 60 s / 1 min)
Charge = 8100 C
Number of electrons = 8100 C / 1.602 x 10^(-19) C per electron
Number of electrons = 5.1 x 10^22 electrons
Therefore, there are 5.1 x10^22 electrons that assed through the heater for 10 minutes.
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,

K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J
Normal force, friction force, gravitational force
Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s
350kg because to get Newton’s it’s mass x Gravity, earths gravity is x10 so 3500 divided by 10 is 350