Answer:
0.003034 s
1.035 m
4.5 m
Explanation:
= frequency of the tone = 329.6 Hz
= Time period of the sound wave
we know that, Time period and frequency are related as

= speed of the sound in the air = 341 ms⁻¹
wavelength of the sound is given as

= speed of the sound in the water = 1480 ms⁻¹
wavelength of the sound in water is given as

Mirror: Reflects off of
Glass of water: Goes through
Dark Fabric: Absorbs into
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B
Answer:



Explanation:
Given:
- volume of liquid content in the can,

- mass of filled can,

- weight of empty can,

<u>So, mass of the empty can:</u>



<u>Hence the mass of liquid(soda):</u>



<u>Therefore the density of liquid soda:</u>
(as density is given as mass per unit volume of the substance)


<u>Specific weight of the liquid soda:</u>



Specific gravity is the density of the substance to the density of water:

where:
density of water


Answer:

Explanation:
The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by

where
is the horizontal velocity
t is the time of flight
The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.
In the first situation, the horizontal distance covered is

in the second case, the horizontal velocity is increased to

And so the new distance travelled will be

So, the distance increases linearly with the horizontal velocity.