n = 1.5atm (15L) / .0821 (280k) = .98 mol NaCl
NaCl = 22.99g Na + 35.45g Cl = 58.44g NaCl
58.44g NaCl x .98 mol NaCl = 57.27g NaCl
Explanation:
hope you get it right :)
Empirical formula is calculated as follows
calculate the moles of each element, that is % composition/ molar mass
molar masses ( Si= 28.09g/mol , Cl= 35.5 g/mol, I=126.9 g/mol)
moles of silicon = 7.962/28.09g/mol= 0.283 moles
moles of chlorine = 20.10 / 35.5g/mol = 0.566 moles
moles of iodine= 71.94 / 126.9 g/mol= 0.567 moles
divide each mole with smallest mole (0.283)
that is silicon = 0.283/0.283= 1 mole
chlorine = 0.566/0.283= 2 mole
Iodine= o.567/0.283= 2 moles
empirical formula is therefore= SiCl2I2
Answer: The bubbles produced are most likely due to oxygen.
Explanation:
Photosynthesis is a phenomenon in which green plants containing chlorophyll use sunlight as a source of energy to convert carbon dioxide and water to form glucose and oxygen.
The balanced chemical reaction for photosynthesis is:

Thus the bubbles produced are most likely due to oxygen.
The molecular formula for hyponitrous acid is H2N2O2. and for nitroxyl is HNO.
The chemical compound HNO is also known as nitroxyl (common name) or Azanon (IUPAC name). In the gas phase, it is widely recognized. In the solution phase, the short-lived intermediate nitroxyl can develop. Nitric oxide (NO) is reduced to form the conjugate base, NO, which is isoelectronic with dioxygen.
By oxidizing hydroxylamine with CuO , HgO, and Ag 2 and by oxidizing hydroxylamine with N2O3 in methyl-alcoholic solution, we can create hyponitrous acid.
Learn more about chemical compound here -
brainly.com/question/12166462
#SPJ4
Answer:
Trial Number of moles
1 0.001249mol
2 0.001232mol
3 0.001187 mol
Explanation:
To calculate the <em>number of moles of tritant</em> you need its<em> molarity</em>.
Since the<em> molarity</em> is not reported, I will use 0.1000M (four significant figures), which is used in other similar problems.
<em>Molarity</em> is the concentration of the solution in number of moles of solute per liter of solution.
In this case the solute is <em>NaOH</em>.
The formula is:

Solve for the <em>number of moles:</em>

Then, using the molarity of 0.1000M and the volumes for each trial you can calculate the number of moles of tritant.
Trial mL liters Number of moles
1 12.49 0.01249 0.01249liters × 0.1000M = 0.001249mol
2 12.32 0.01232 0.01232liters × 0.1000M = 0.001232mol
3 11.87 0.01187 0.01187liters × 0.1000M = 0.001187 mol