Answer:
2 Atm; 2.016 g
Explanation:
Changing the volume without changing the temperature or mass only changes the pressure. Volume and pressure are inversely proportional so halving the volume will double the pressure.
P = 1 Atm, T = 0 °C are "standard" temperature and pressure (STP). The volume of 1 mole of gas is 22.4 L under these conditions. That means the amount of hydrogen gas in the cylinder is 1 mole, so has a mass of 2.016 g.
After the volume reduction, the pressure is 2 Atm, and the mass remains 2.016 g.
Girlllll idkkkkknim just tryna get pointtttt
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.
Answer: Tin (Sn)
Explanation: The electron configuration for tin (Sn) is shown in the picture. It's last electrons are:
5s^2 4d^10 5p^2
The valence electrons are in the 5th electron shell and include 2 each in the 5s and 5p orbitals.
Then we would not have oxygen because plants give oxygen in order to breathe