Answer:
The value of the Golden Igloo is $227.4 million.
Explanation:
First, we need to find the inner and the outer volume of the half-spherical shell:


The total volume is given by:

Where:
: is the inner volume
: is the inner radius = 1.25/2 = 0.625 m
: is the outer volume
: is the outer radius = 1.45/2 = 0.725 m
Then, the total volume of the Igloo is:
![V_{T} = \frac{2}{3}\pi r_{o}^{3} - \frac{2}{3}\pi r_{i}^{3} = \frac{2}{3}\pi [(0.725 m)^{3} - (0.625 m)^{3}] = 0.29 m^{3}](https://tex.z-dn.net/?f=%20V_%7BT%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r_%7Bo%7D%5E%7B3%7D%20-%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r_%7Bi%7D%5E%7B3%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%5B%280.725%20m%29%5E%7B3%7D%20-%20%280.625%20m%29%5E%7B3%7D%5D%20%3D%200.29%20m%5E%7B3%7D%20)
Now, by using the density we can find the mass of the Igloo:

Finally, the value (V) of the antiquity is:
Therefore, the value of the Golden Igloo is $227.4 million.
I hope it helps you!
The answer is 492.8 g
1. Calculate a number of moles of a sample.
2. Calculate a molar mass of C3H8.
3. Calculate a mass of the sample.
1. Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance: 6.023 × 10²³ units per 1 mole
6.023 × 10²³ atoms : 1 mol =6.72 × 10²⁴ atoms : n
n = 6.72 × 10²⁴ atoms * 1 mol : 6.023 × 10²³ atoms = 1.12 × 10 mol = 11.2 mol
2. Molar mass (Mr) of C3H8 is sum of atomic masses (Ar) of its elements:
Ar(C) = 12 g/mol
Ar(H) = 1 g/mol
Mr(C3H8) = 3 * Ar(C) + 8 * Ar(H) = 3 * 12 + 8 * 1 = 36 + 8 = 44 g/mol
3. Mass (m) of a sample is number of moles (n) multiplied by molar mass (Mr) of C3H8:
m = n * Mr = 11.2 mol * 44 g/mol = 492.8 g
Answer:
N2
Explanation:
Rate of effusion is defined by Graham's Law:
(Rate 1/Rate 2) = (sqrt (M2)/ sqrt (M1))
(Where M is the molar mass of each substance. )
Molar Mass of oxygen, O2, is 32 (M1).
Rate of effusion of O2 to an unknown gas is .935(Rate 1).
Rate 2 is unknown so put 1.
Solve for x (M2).
.935/1 = sqrt x/ sqrt32
.935 x sqrt 32 = sqrt x
5.29 = sq rt x
5.29^2 = 27.975 = 28
N2 has a molar mass of 28 so it is the correct gas.
Answer:
BCI3 is a non polar compound because there is no neutral in it