Answer:
Explanation:
f = 
T = 120 N
L = 3.00 m
(m/L) = 120 g/cm(100 cm/m / 1000 g/kg) = 12 kg/m
(wow that's massive for a "rope")
f =
)
f =
/6 = 0.527 Hz
This is a completely silly exercise unless this "rope" is in space somewhere as the weight of the rope (353 N on earth) far exceeds the tension applied.
A much more reasonable linear density would be 120 g/m resulting in a frequency of √1000/6 = 5.27 Hz on a rope that weighs only 3.5 N
Answer:
the power used by the person is 17 W.
Explanation:
Given;
applied force, F = 51 N
distance through which the chair is used, d = 5 m
time of motion, t = 15 s
The power used by the person is calculated as;

Therefore, the power used by the person is 17 W.
Kinetic energy is the energy of mass in motion, the kinetic energy that an object has is because of it's motion.Heavier objects that are moving have more kinetic energy than lighter ones.
There is no medium for the sound waves to travel through
Answer:
119.88 km/h
Explanation:
1500/45=33.3
use a m/s to km/h calculator
put in 33.3 for m/s and you will get 119.88 km/h.
119.88 km/h.