1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:
where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is
Therefore, the angular velocity of the telescope is
2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation
where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is
Therefore, the linear velocity of the telescope is:
The force of friction is given by:
f = μR, where μ is the friction coefficient and R is the reaction force, which will be equal to the weight.
100 = μ x 130
μ = 0.77
Answer:
20cm
Explanation:
A convex lens has a positive focal length and the object placed in front of it produce both virtual and real image <em>(image distance can be negative or positive depending on the nature of the image</em>).
According to the lens equation
where;
f is the focal length of the lens
u is the object distance
v is the image distance
If the magnification is - 0.6
mag = v/u = -0.5
v = -0.5u
since v = 10cm
10 = -0.5u
u = -10/0.5
u =-20 cm
Substitute u = -20cm ( due to negative magnification)and v = 10cm into the lens formula to get the focal length f
Hence the focal length of the convex lens is 20cm