<span>While driving your rental car on your trip to Europe, you find that you are getting 9.7 kilometers per liter of gasoline. We know that 1 mile is equal to 1.609 kilometers. So divide 9.7 kilometers by 1.609 kilometrs/mile and you will get 6.03 miles per gasoline</span>
Answer:
Ni(s) + H₂O(l) -------------> [Ni(H₂O)₆]²⁺
Explanation:
Data Given:
Reactants:
Ni(s) + H₂O(l)
Product = ?
Solution:
Names of the Reactants
Ni = Nickel
H₂O = water
Reaction:
Normally nickel directly does not react with water under normal condition. But indirectly in acidic or neutral condition it form complex ion.
For this it first dissolve slowly in dilute acid, in this reaction it liberate Ni²⁺ ions these nickel ions form light green complex ions in aqueous solution.
Ni(s) + H₂SO₄(aq) -------> Ni²⁺(aq) + SO₄²⁻(aq) + H₂
This is a type of complex formation in which Nickel react with water and produced a light green color new complex ion or product.
Complete reaction is as under
Ni(s) + H₂O(l) -------------> [Ni(H₂O)₆]²⁺
Balance Reaction:
Ni(s) + 6 H₂O(l) -------------> [Ni(H₂O)₆]²⁺
So.
by this reaction one product is formed that is [Ni(H₂O)₆]²⁺ named as hexaqua nickel ion
#a
- HClO_4(aq)+H2O(l)—»H3O+(aq)+ClO_4
#b
- CH3CH2COOH + H2O ==> CH3COO^- +H3O
#c
This is reversible reaction
- H2O + NH_3 ⇄ OH^- + NH4^+
We can find the mass of ammonia using the ideal gas law equation,
PV = nRT
where
P - pressure - 2.15 atm x 101 325 = 2.18 x 10⁵
V - volume - 3.00 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in kelvin - 15.0 °C + 273 = 288 K
substituting these values in the equation
2.18 x 10⁵ Pa x 3.00 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 288 K
n = 0.273 mol
number of moles of NH₃ is 0.273 mol
molar mass of NH₃ - 17.0 g/mol
mass pf ammonia present - 0.273 mol x 17.0 g/mol = 4.64 g
mass of NH₃ present is 4.64 g