Answer with Explanation:
A candle relights when a match is held above the wick because its trail of smoke still contains some of the wax. When candles are burned, the heat of the flame turns the the wax (which is originally solid) into liquid (commonly near the wick) and then evaporates as gas. The vaporized wax actually protect the wick and this is the reason why it is not burned. So, when you put off a candle, the vaporized wax is still present near the wick. This, remember, holds heat and light energy. Thus, this explains why the candle can be relighted once you hold a match above the wick. It then allows the match to ignite.
Thus, this explains the answer.
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)