Answer:
3 bonds are needed.
Explanation:
The electrons that are involved in chemical bonding are those in the outer shell of the highest energy level of the atom. The electron configuration of nitrogen (N) is 1s²2s²2p³. That means thy at each nitrogen atom has 5 valence electrons: 2 electrons in the 2s orbital and 3 electrons in the 2p orbital. To fullfil the octet, each nitrogen atom needs 3 electrons. So, they can share each other 3 electrons to form 3 simple bonds. Therefore, the nitrogen molecule (N₂) has 3 bonds involving 6 bonding electrons or a triple bond.
Theoretical yield of Al₂O₃: 1.50 mol.
<h3>Explanation</h3>
;
.
How many moles of aluminum oxide formula units will be produced <em>if</em> aluminum is the limiting reactant?
Aluminum reacts to aluminum oxide at a two-to-one ratio.
.
As a result, 3.00 moles of aluminum will give rise to 1.50 moles of aluminum oxide.
How many moles of aluminum oxide formula units will be produced <em>if</em> oxygen is the limiting reactant?
Oxygen reacts to produce aluminum oxide at a three-to-two ratio.

As a result, 2.55 moles of oxygen will give rise to 1.70 moles of aluminum oxide.
How many moles of aluminum oxide formula units will be produced?
Aluminum is the limiting reactant. Only 1.50 moles of aluminum oxide formula units will be produced. 1.70 moles isn't feasible since aluminum would run out by the time 1.50 moles was produced.
Answer:
The formula of Al³⁺ and SO₄²⁻ is aluminum sulfate.
Explanation:
The formula for aluminum sulfate is Al₂(SO₄)₃. If we say in terms of ions. The ions are Al³⁺. It is a positive ion or the cation. Other ion is SO₄²⁻. It is sulfate ion. It is anion.
Aluminum sulphate is used in water purification and as a mordant in dyeing and printing textiles.
Hence, the formula of Al³⁺ and SO₄²⁻ is aluminum sulfate.
You should always do A. form a hypothesis before performing an experiment also the other options cannot happen until after an experiment.