Answer:

Explanation:
We are given that 25 mL of 0.10 M
is titrated with 0.10 M NaOH(aq).
We have to find the pH of solution
Volume of 
Volume of NaoH=0.01 L
Volume of solution =25 +10=35 mL=
Because 1 L=1000 mL
Molarity of NaOH=Concentration OH-=0.10M
Concentration of H+= Molarity of
=0.10 M
Number of moles of H+=Molarity multiply by volume of given acid
Number of moles of H+=
=0.0025 moles
Number of moles of
=0.001mole
Number of moles of H+ remaining after adding 10 mL base = 0.0025-0.001=0.0015 moles
Concentration of H+=
pH=-log [H+]=-log [4.28
]=-log4.28+2 log 10=-0.631+2

the compound with the smaller lattice energy is potassium sulphide here the size of the molecule play a important role
The quantity of energy released by the electrostatic attraction of oppositely charged ions is known as lattice energy (L.E). The ion's size and charge affect the lattice energy.
lattice energy is inversely proportional to size of ion and directly proportional to charge of the ion. They are each charged equally that is plus two and minus two However, because the Sulphur is larger in size and the oxygen is lesser in this case, The lattice energy of potassium oxide is larger the lattice energy of potassium sulphide is smaller.
To learn more about lattice energy :
brainly.com/question/18222315
#SPJ4
First, let's write the givens in the form of a chemical equation:
3A + B ...................> 4X + 2Y
Now we find that this equation implies the following:
For every 4X and 2Y formation, 3A and 1B must disappear (react).
Comparing this implication to the above choices, we find that the right answer is: <span>The rate of formation of X is four times the rate of disappearance of B.</span>
Answer:
percentage by mass of each element in a compound.
Explanation: