Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
B) 12 m
Explanation:
Gravitational potential energy is:
PE = mgh
Given PE = 5997.6 J, and m = 51 kg:
5997.6 J = (51 kg) (9.8 m/s²) h
h = 12 m
Answer:
At time 10.28 s after A is fired bullet B passes A.
Passing of B occurs at 4108.31 height.
Explanation:
Let h be the height at which this occurs and t be the time after second bullet fires.
Distance traveled by first bullet can be calculated using equation of motion

Here s = h,u = 450m/s a = -g and t = t+3
Substituting

Distance traveled by second bullet
Here s = h,u = 600m/s a = -g and t = t
Substituting

Solving both equations

So at time 10.28 s after A is fired bullet B passes A.
Height at t = 7.28 s

Passing of B occurs at 4108.31 height.
I used to wish that I can fly