Phản ứng este hoá ạ
good luckk
<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Answer:
7.65 moles of silver are produced
Explanation:
Zinc, Zn, reacts with silver nitrate, AgNO3, as follows:
Zn + 2AgNO3 → Zn(NO3)2 + 2Ag
<em>Where 1 mole of Zn reacts with an excess of AgNO3 to produce 2 moles of Ag</em>
To solve this question we must convert the mass of Zn to moles and, using the chemical equation, we can find the moles of Ag as follows:
<em>Moles Zn (Molar mass: 65.38g/mol):</em>
250g Zn * (1mol / 65.38g) = 3.824 moles Zn
<em>Moles Ag:</em>
3.824 moles Zn * (2mol Ag / 1mol Zn) =
<h3>7.65 moles of silver are produced</h3>
Arrangement of atoms or group of atoms in a three dimensional ordered pattern in a crystal is said to be a crystalline lattice. They are arranged in a specific pattern with high symmetry. The heating of the crystal at high temperature will result in the increase of vibrational kinetic energy of the atoms in the crystal and this will result in the breaking of lattice apart and due to the breaking of lattice apart the ions will flow freely.
Thus, the heating of a solid at high temperature will lead to the lattice breaks apart and ions will flow freely.