The answer to this would be false.
Answer:
186.9Kelvin
Explanation:
The ideal gas law equation is PV
=
n
R
T
where
P is the pressure of the gas
V is the volume it occupies
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821
atm L
/mol K
T is the absolute temperature of the gas
Ensure units of the volume, pressure, and temperature of the gas correspond to R
( the universal gas constant, equal to 0.0821
atm L
/mol K
)
n
=
3.54moles
P= 1.57
V= 34.6
T=?
PV
=
n
R
T
PV/nR = T
1.57 x 34.6/3.54 x 0.0821
54.322/0.290634= 186.908620464= T
186.9Kelvin ( approximately to 1 decimal place)
Answer:
Options B and C are the two criteria that are most essential
Explanation:
When trying to develop a novel process, <u>it is important that the new process involves the use of equipment that can be operated safely by workers so as to prevent death or injury in the cause of handling this equipment</u>. If this equipment is seen not to be safe or cannot be handled safely by workers, it can/will force workers to previous or alternative methods that require more safe equipment.
Also, the process must be able to maximize the most of the reactants, i.e <u>the process must be able to convert a good percentage of the reactants into the desired product (phosphorus pentachloride) since that is the focus</u>. This will also lead to reduction of byproducts produced which could be useful or otherwise (a loss).
H3O+(aq) + OH-(aq) --> 2H2O (l)
NaHCO3(s) --> NaH 2+ (aq) + CO3 2- (aq)
NaH 2+ (aq) + H2O (l) --> Na+ (aq) + H3O+ (aq)
H2O (l) + CO3 2- (aq) --> OH- (aq) + HCO3- (aq)
(I'm not completely sure if I did the third question right) I'm sorry if I got it wrong