Answer:
The volume of the gas will be 78.31 L at 1.7 °C.
Explanation:
We can find the temperature of the gas by the ideal gas law equation:

Where:
n: is the number of moles
V: is the volume
T: is the temperature
R: is the gas constant = 0.082 L*atm/(K*mol)
From the initial we can find the number of moles:

Now, we can find the temperature with the final conditions:

The temperature in Celsius is:

Therefore, the volume of the gas will be 78.31 L at 1.7 °C.
I hope it helps you!
Answer:
Explanation:
The pressure of a gaseous mixture is equal to the sum of the partial pressures of the individual gases:
Σ

The prompt is trying to confuse you, but it actually tells us the pressure of the mixture to be 1 atm, but this can be converted to torr. Furthermore, we are informed only three gases are in the mixture: diatomic nitrogen, diatomic oxygen, and carbon dioxide:

Solve for Po2:

Thus, the partial pressure of diatomic oxygen is 177.707 torr.
<u><em>If you liked this solution, hit Thanks or give a Rating!</em></u>
Answer:
can you be more clear with your question :
2H2O --> 2H2 + O2
The mole H2O:mole O2 ratio is 2:1
Now determine how many moles of O2 are in 50g: 50g × 1mol/32g = 1.56 moles O2
Since 1 mole of O2 was produced for every 2 moles of H2O, we need 2×O2moles = H2O moles
2×1.56 = 3.13 moles H2O
Finally, convert moles to grams for H2O:
3.13moles × 18g/mol = 56.28 g H2O
D) 56.28
Answer:
C. 3CO(g) + Fe2O3(s)
Explanation:
The substance(s) to the hath left of the arrow in a chemical equation art hath called reactants. A reactant is a substance yond is presenteth at the starteth of a chemical reaction. The substance(s) to the right of the arrow art hath called products. A product is a substance yond is presenteth at the endeth of a chemical reaction
So in this example, 3CO(g) + Fe2O3(s) art the reactants.
The 2Fe(S) + 3CO2(G) art the products.
Desire I holp! Has't a most wondrous day!
Hope I helped! Have a great day!