Answer: (22.98977 g Na/mol) + (1.007947 g H/mol) + (12.01078 g C/mol) + ((15.99943 g O/mol) x 3) = 84.0067 g NaHCO3/mol
9.
(1.20 g NaHCO3) / (84.0067 g NaHCO3/mol) = 0.0143 mol NaHCO3
10.
Supposing the question is asking about "how many moles" of CO2. And supposing the reaction to be something like:
NaHCO3 + H{+} = Na{+} + H2O + CO2
(0.0143 mol NaHCO3) x (1 mol CO2 / 1 mol NaHCO3) = 0.0143 mol CO2 in theory
11.
n = PV / RT = (1 atm) x (0.250 L) / ((0.0821 L atm/K mol) x (298 K)) = 0.0102 mol CO2
12.
(0.0143 mol - 0.0102 mol) / (0.0143 mol) = 0.287 = 28.7%
Explanation:
Answer:
c. KBr
.
Explanation:
Hello!
In this case, since electrolytes are substances that are able to carry electric current in the form of electrons via ions, those that are ionic are said to have the greatest capacity to conduct the electricity; in such a way, since SO2, C6H12O6 and CO are non-ionic molecules but covalent, they are not good conductor, therefore the best conductor would be c. KBr
as it is an ionic compound due to the electronegativity of the K-Br bond.
Best regards!
Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.
Plasma membrane is the answer
The arrow doesn’t “point” to anything really, it means that the reactants form (or change) into the products.