The color emitted be larger atoms is lower in energy then the light emitted by smaller atoms
13.6
a) yes Pb is more reactive that Ag, Pb before Ag
b) no, Cu after H
c) yes, Cl2 is more active than I2
4) yes, Mg is more active
13.7 (as I think)
Al ³⁺ more active than Zn²⁺, Mn can react with Zn²⁺, but not with Al ³⁺ , because Mn after Al but before Zn
For the given reaction, according to the Law of Conservation of Energy, the energy required to decompose Hcl and produce
are equal.
Answer: Option C
<u>Explanation:</u>
According to law of conservation's of energy, energy can only be transferred from reactants to product side. So in this process, it is stated that 185 kJ of energy will be needed to decompose it. So that 185 kJ of energy will be getting transferred to produce the creation of hydrogen and chloride in the product side.
So if we see from the reactants side, the energy of 185 kJ is required for decomposition of hydrogen chloride. Similarly, if we see from the product side, the 185 kJ utilized for decomposition is transferred as energy required to create hydrogen and chlorine atoms. This statement will be in accordance with the law of conservation's of energy.
A condensation reaction is described to be a reaction wherein two molecules form an even larger product and consequently produces a smaller molecule as a by-product. For example, when two amino acids are combined, a dipeptide bond is formed. As a result, 1 molecule of water is produced as a by-product.
Answer:
Option C. 13.5 atm
Explanation:
From the question given above, the following data were obtained:
Pressure of Neon (Pₙₑ) = 4.1 atm
Pressure of Argon (Pₐᵣ) = 3.2 atm
Pressure of nitrogen (Pₙ₂) = 6.2 atm
Total pressure (Pₜ) =?
The total pressure in the container can be obtained by adding the pressure of the individual gases. This is illustrated below:
Pₜ = Pₙₑ + Pₐᵣ + Pₙ₂
Pₜ = 4.1 + 3.2 + 6.2
Pₜ = 13.5 atm
Therefore, the total pressure in the container is 13.5 atm