<h2>
Answer:</h2>
He saves 13.2 minutes
<h2>
Explanation:</h2>
Hey! The question is incomplete, but it can be found on the internet. The question is:
How many minutes did he save?
Let's call:

We know that the 135 miles are on the interstate highway where the speed limit is 65 mph. From this, we can calculate the time it takes to drive on this highway. Assuming Richard maintains constant the speed:

Today he is running late and decides to take his chances by driving at 73 mph, so the new time it takes to take the trip is:

So he saves the time
:

In minutes:

The answer is Carbonic acid
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
Answer:
100°c = 373.15 K
100°C=212°F
Explanation:
To convert Celsius to Kelvin, we need the following equation.
°C + 273.15 = K
100°C + 273.15 = K
373.15 = K
Therefore, 100°c = 373.15 K
F = 9/5C + 32
=9/5(100)+32
= (180) + 32
= 212°
Therefore,
100°C=212°F
Answer:
If you apply a force to separate 2 opposite poles, the potential energy of the system increases.