Ok so the formula is d=vi(t)+½at² and when you substitute it you should get 172.5meters
Answer:
Vector has a direction and a magnitude, scalar only has a magnitude
Explanation:
Answer:
The three ways thermal energy is transferred are;
1) Conduction
2) Convection
3) Radiation
Explanation:
1) The conduction of the heat from the open flame to the marshmallow is through the direct contact of the flame with the marshmallow, such that the flame the region of the combustion reaction, that produces light and heat touches the marshmallow
2) The convection process is the transfer of heat from the rising heated combustion products, as well as the heated air that rises from the flame
3) The radiation heat transfer is the transfer of the heat from the fire to the marshmallows directly by the heat the moves in the form of electromagnetic waves at temperatures above 1000 K, without the need for a medium, such that the marshmallow can be heated by the heat coming from side of the flame.
The energy stored in the membrane is 
Explanation:
The capacitance of a parallel-plate capacitor is given by

where
k is the dielectric constant of the material
is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
For the membrane in this problem, we have
k = 4.6


Substituting, we find its capacitance:

Now we can find the energy stored: for a capacitor, it is given by

where
is the capacitance
is the potential difference
Substituting,

Learn more about capacitors:
brainly.com/question/10427437
brainly.com/question/8892837
brainly.com/question/9617400
#LearnwithBrainly
a) The wind is generated because there are different values of pressure in the amtophera. That is, it is generated due to a pressure difference between two atmospheric points. Generally the movement is performed when the air travels from the highest pressure point, to the lowest pressure point. This is also a direct cause of different types of wind speeds.
b) If the cloud moves from one direction to another, it will indicate that from the starting point the pressure is higher, and the point towards which it is directed, the pressure is lower. If we place this on a Cartesian plane with reference to the cardinal points, we can know the approximate place or area where the pressures are different.