Btw only someone who is nice will answer tour question. You can't expect for explanition when the question is only worth 5 points. Not trying to be mean sorry if i am being mean
Answer:
The necessary information is if the forces acting on the block are in equilibrium
The coefficient of friction is 0.577
Explanation:
Where the forces acting on the object are in equilibrium, we have;
At constant velocity, the net force acting on the particle = 0
However, the frictional force is then given as
F = mg sinθ
Where:
m = Mass of the block
g = Acceleration due to gravity and
θ = Angle of inclination of the slope
F = 5×9.81×sin 30 = 24.525 N
Therefore, the coefficient of friction is given as
24.525 N = μ×m×g × cos θ = μ × 5 × 9.81 × cos 30 = μ × 42.479
μ × 42.479 N= 24.525 N
∴ μ = 24.525 N ÷ 42.479 N = 0.577
It is very difficult for an atom to accept a proton. It can only be done under very special circumstances. So A and C are both incorrect. I don't see how D is possible. The atom does lose 1 electron, but how it gets 21 is think air.
The answer is B which is exactly what happens.
The boy's momentum is 160 kg*m/s north.
The formula of momentum is p = mv, where p is momentum.
p = 40 kg * 4m/s north
p =160 kg*m/s north<span>Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more.</span>
<span>436 km
The conversion factor between kilocalorie/hour and watts is 1.163 (1 kcal/hr = 1.163 watt). So let's convert the energy consumption of the bird from watts to kcal/hr
3.7 w / 1.163 w hr/kcal = 3.18 kcal /hr
1 gram of fat has 9 kcal, so the total number of kcals consumed will be 4 * 9 = 36.
So the bird can fly for 36/3.18 = 11.32 hours
The distance traveled will be
11.32 h * 3600 s/h * 10.7 m/s / 1000 m/km = 436 km</span>