Answer:
I Got You 64 is the correct answer.
Step by-step explanation:
7 x 2= 14
5 x 10= 50
50 + 14= 64
Give 5 stars, Smash that thanks button and give brainlyest.
And dont forget having a bad day change it. Bye!
Answer:
we have (a,b,c)=(4,-2,0) and R=4 (radius)
Step-by-step explanation:
since
x²+y²+z²−8x+4y=−4
we have to complete the squares to finish with a equation of the form
(x-a)²+(y-b)²+(z-c)²=R²
that is the equation of a sphere of radius R and centre in (a,b,c)
thus
x²+y²+z²−8x+4y=−4
x²+y²+z²−8x+4y +4 = 0
x²+y²+z²−8x+4y +4 +16-16 =0
(x²−8x + 16) + (y² + 4y + 4 ) + (z²) -16 = 0
(x-4)² + (y+2)² + z² = 16
(x-4)² + (y-(-2))² + (z-0)² = 4²
thus we have a=4 , b= -2 , c= 0 and R=4
This response is based upon your having had some background in calculus. "dx" is not introduced before that.
Take a look at the sample function y = f(x) = x^2 + 9. Here x is the independent variable; the dependent variable y changes with x.
Now, for a big jump: we consider finding the area under a curve (graph) between x = a and x = b. We subdivide that interval [a,b] into n vertical slices of area. Each of those slices has its own area: f(x)*dx, where dx represents the width of such subarea. f(x)*dx is the actual subarea. To find the total area under the curve f(x) between x= a and x = b, we add up all of these individual subareas between x = a and x = b. Note that the subinterval width is
b-a
dx = ---------- , and that dx becomes smaller and smaller as the number of
n subintervals increases.
Once again, this all makes sense only if you've begun calculus (particularly integral calculus). Do not try to relate it to earlier math courses.
Answer:
The answer is 4.50+2.17=6.67, which is the amount she owes her mother. Hope this helps!
You can find counterexamples to disprove this claim. We have positive integers that are perfect square numbers; when we take the square root of those numbers, we get an integer.
For example, the square root of 1 is 1, which is an integer. So if y = 1, then the denominator becomes an integer and thus we get a quotient of two integers (since x is also defined to be an integer), the definition of a rational number.
Example: x = 2, y = 1 ends up with
which is rational. This goes against the claim that
is always irrational for positive integers x and y.
Any integer y that is a perfect square will work to disprove this claim, e.g. y = 1, y = 4, y= 9, y = 16. So it is not always irrational.